[欧美vivoeso8090]同余室内设计

2022-11-10 / by 欧美vivoeso8090

大家好今天来介绍的问题,欧美vivoeso8090,以下是小编对此问题的归纳整理,来看看吧。

文章目录列表:

离散数学设A=123456R为A上的关系R的关系为

R = {,,,,,,,,,,,,}

M={2,3} 其上界为6,下界为1。


主要优势:

离散数学是传统的逻辑学,集合论(包括函数),数论基础,算法设计,组合分析,离散概率,关系理论,图论与树,抽象代数(包括代数系统,群、环、域等),布尔代数,计算模型(语言与自动机)等汇集起来的一门综合学科。离散数学的应用遍及现代科学技术的诸多领域。

我国古代都有哪些科技成就名人

刘徽(约225年—约295年),魏晋期间伟大的数学家,中国古典数学理论的奠基人之一。在中国数学史上作出了极大的贡献,他的杰作《九章算术注》和《海岛算经》,是中国最宝贵的数学遗产。
祖冲之是南北朝时期杰出的数学家和天文学家。父祖皆谙熟天文、算学。祖冲之少传家业,青年时代入华林省,从事学术研究。在数学方面,祖冲之最重要的成就是计算机圆周率。他算出圆周率在3.1415926和3.1415927之间。这个结果领先于西方国家约一千年,直到15世纪阿拉伯数学家阿尔·卡西和16世纪法国数学家韦达才得到了更精确的圆周率。祖冲之在天文历法方面创制了《大明历》,最早把岁差引进历法,提高了历法的准确性。他还采用了391年有144个闰月的新闰周,突破了沿袭很久的19年7闰的传统方法。
张衡是东汉著名的天文学家、文学家。他改进了浑天仪(即现代的天球仪),利用齿轮系统把浑象与计时漏壶联系起来,能在室内观测到恒星的位置。他还设计制造了候风地动仪,这是世界上公认最早的地震仪。张衡也是杰出的文学家,所作《四愁诗》、《二京赋》等诗赋均为世所称道。
李时珍是中国明代著名的医学与药物学家。22岁开始行医,他发现当时有关本草的著述缺乏系统,并且有许多谬误之处,便决心进行整理。李时珍通过实物考察和深入民间采访,并参考历代医药文献800余种,经过了27年的努力完成药物学巨著《本草纲目》,被称为“东方医学巨典”。还著有《五脏图论》、《奇经八脉考》和《濒湖脉学》。
华佗(约公元145年-公元208年),字元化,一名旉,沛国谯县(今安徽亳州)人,东汉末年著名的医学家。华佗与董奉、张仲景并称为“建安三神医”。少时曾在外游学,行医足迹遍及安徽、河南、山东、江苏等地,钻研医术而不求仕途。他医术全面,尤其擅长外科,精于手术。并精通内、妇、儿、针灸各科。
郭守敬(1231年-1316年),字若思。邢州邢台县(今河北省邢台市信都区)人。元朝著名的天文学家、数学家、水利工程专家。早年师从刘秉忠、张文谦,官至太史令、昭文馆大学士、知太史院事,世称“郭太史”。元仁宗延祐三年(1316年),郭守敬逝世,享年八十六岁。著有《推步》《立成》等十四种天文历法著作。郭守敬在天文、历法、水利和数学等方面都取得了卓越的成就。自至元十三年(1276年)起,他与许衡、王恂等奉命修订新历法,历时四年,制订出《授时历》,成为当时世界上最先进的一种历法,通行三百六十多年。为修订历法,郭守敬还改制、发明了简仪、高表等十二种新仪器。
沈括(1031-1095),字存中,号梦溪丈人,北宋科学家。沈括一生致志于科学研究,在众多学科领域都有很深的造诣和卓越的成就,被誉为"中国整部科学史中最卓越的人物",其名作《梦溪笔谈》,内容丰富,集前代科学成就之大成,在世界文化史上有着重要的地位。
宋应星(1587-1661),字长庚,奉新县宋埠镇牌楼村人。明末清初科学家。宋应星除著《天工开物》外,还有《卮言十种》、《画音归正》、《杂色文》、《原耗》等著作。他的著作都具有珍贵的历史价值和科学价值。如在“五金”卷中,宋应星是世界上第一个科学地论述锌和铜锌合金(黄铜)的科学家。他明确指出,锌是一种新金属,并且首次记载了它的冶炼方法。这是我国古代金属冶炼史上的重要成就之一。使中国在很长一段时间里成为世界上唯一能大规模炼锌的国家。宋应星记载的用金属锌代替锌化合物(炉甘石)炼制黄铜的方法,是人类历史上用铜和锌两种金属直接熔融而得黄铜的最早记录。
程大位(1533~1606),明代商人、珠算发明家。字汝思,号宾渠,南直隶徽州府休宁县率口(今黄山市屯溪)人。英国李约瑟所说:“在明代数学家当中,最引人注目的是程大位”,“在程大位《直指算法统宗》以前,没有任何关于近代珠算算盘的完整叙述”,可谓集成计算的鼻祖。
商高,为西周初数学家。商高在公元前1000年发现勾股定理并完成证明。此发现早于毕达哥拉斯定理五百到六百年。勾股定理是中国数学家的独立发现,在中国早有记载。

如何评价哥德巴赫猜想

哥德巴赫猜想的意义
哥德巴赫猜想的内容十分简洁,但它的证明却异乎寻常的困难。从哥德巴赫写信之日起,直至1920年,并没有一个方法可以用来证明这个问题。 1900年,在法国巴黎召开的第2届国际数学大会上,德国数学家大卫·希尔伯特在他著名的演说中,为20世纪的数学家建议了23个问题,而哥德巴赫猜想(1)就是他第八个问题的一部分。 1912年,在英国剑桥召开的第5届国际数学大会上,德国数学家E·朗道将哥德巴赫猜想列为数论中按当时数学水平不能解决的4个问题之一。 1921年,数论泰斗、英国数论学家哈罗德·哈代在德国哥德哈根数学会的演讲中,宣称猜想(1)的困难程度“是可以与数学中任何未解决的问题相比拟的”。 我国数学家王元说:“哥德巴赫猜想不仅是数论,也是整个数学中最著名与困难的问题之一。”

有关数学手抄报的内容 小学六年级上册

高斯(Gauss 1777~1855)生于Brunswick,位于现在德国中北部。他的祖父是农民,父亲是泥水匠,母亲是一个石匠的女儿,有一个很聪明的弟弟,高斯这位舅舅,对小高斯很照顾,偶而会给他一些指导,而父亲可以说是一名「大老粗」,认为只有力气能挣钱,学问这种劳什子对穷人是没有用的。

高斯很早就展现过人才华,三岁时就能指出父亲帐册上的错误。七岁时进了小学,在破旧的教室里上课,老师对学生并不好,常认为自己在穷乡僻壤教书是怀才不遇。高斯十岁时,老师考了那道著名的「从一加到一百」,终于发现了高斯的才华,他知道自己的能力不足以教高斯,就从汉堡买了一本较深的数学书给高斯读。同时,高斯和大他差不多十岁的助教Bartels变得很熟,而Bartels的能力也比老师高得多,后来成为大学教授,他教了高斯更多更深的数学。

老师和助教去拜访高斯的父亲,要他让高斯接受更高的教育,但高斯的父亲认为儿子应该像他一样,作个泥水匠,而且也没有钱让高斯继续读书,最后的结论是--去找有钱有势的人当高斯的赞助人,虽然他们不知道要到哪里找。经过这次的访问,高斯免除了每天晚上织布的工作,每天和Bartels讨论数学,但不久之后,Bartels也没有什么东西可以教高斯了。

1788年高斯不顾父亲的反对进了高等学校。数学老师看了高斯的作业后就要他不必再上数学课,而他的拉丁文不久也凌驾全班之上。

1791年高斯终于找到了资助人--布伦斯维克公爵费迪南(Braunschweig),答应尽一切可能帮助他,高斯的父亲再也没有反对的理由。隔年,高斯进入Braunschweig学院。这年,高斯十五岁。在那里,高斯开始对高等数学作研究。并且独立发现了二项式定理的一般形式、数论上的「二次互逆定理」(Law of Quadratic Reciprocity)、质数分布定理(prime numer theorem)、及算术几何平均(arithmetic-geometric mean)。

1795年高斯进入哥廷根(G?ttingen)大学,因为他在语言和数学上都极有天分,为了将来是要专攻古典语文或数学苦恼了一阵子。到了1796年,十七岁的高斯得到了一个数学史上极重要的结果。最为人所知,也使得他走上数学之路的,就是正十七边形尺规作图之理论与方法。

希腊时代的数学家已经知道如何用尺规作出正 2m×3n×5p 边形,其中 m 是正整数,而 n 和 p 只能是0或1。但是对于正七、九、十一边形的尺规作图法,两千年来都没有人知道。而高斯证明了:

一个正 n 边形可以尺规作图若且唯若 n 是以下两种形式之一:

1、n = 2k,k = 2, 3,…

2、n = 2k × (几个不同「费马质数」的乘积),k = 0,1,2,…

费马质数是形如 Fk = 22k 的质数。像 F0 = 3,F1 = 5,F2 = 17,F3 = 257, F4 = 65537,都是质数。高斯用代数的方法解决二千多年来的几何难题,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但后来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家一定分辨不出来。

1799年高斯提出了他的博士论文,这论文证明了代数一个重要的定理:

任一多项式都有(复数)根。这结果称为「代数学基本定理」(Fundamental Theorem of Algebra)。

事实上在高斯之前有许多数学家认为已给出了这个结果的证明,可是没有一个证明是严密的。高斯把前人证明的缺失一一指出来,然后提出自己的见解,他一生中一共给出了四个不同的证明。

在1801年,高斯二十四岁时出版了《算学研究》(Disquesitiones Arithmeticae),这本书以拉丁文写成,原来有八章,由于钱不够,只好印七章。

这本书除了第七章介绍代数基本定理外,其余都是数论,可以说是数论第一本有系统的着作,高斯第一次介绍「同余」(Congruent)的概念。「二次互逆定理」也在其中。

二十四岁开始,高斯放弃在纯数学的研究,作了几年天文学的研究。

当时的天文界正在为火星和木星间庞大的间隙烦恼不已,认为火星和木星间应该还有行星未被发现。在1801年,意大利的天文学家Piazzi,发现在火星和木星间有一颗新星。它被命名为「谷神星」(Cere)。现在我们知道它是火星和木星的小行星带中的一个,但当时天文学界争论不休,有人说这是行星,有人说这是彗星。必须继续观察才能判决,但是Piazzi只能观察到它9度的轨道,再来,它便隐身到太阳后面去了。因此无法知道它的轨道,也无法判定它是行星或彗星。

高斯这时对这个问是产生兴趣,他决定解决这个捉摸不到的星体轨迹的问题。高斯自己独创了只要三次观察,就可以来计算星球轨道的方法。他可以极准确地预测行星的位置。果然,谷神星准确无误的在高斯预测的地方出现。这个方法--虽然他当时没有公布--就是「最小平方法」 (Method of Least Square)。

1802年,他又准确预测了小行星二号--智神星(Pallas)的位置,这时他的声名远播,荣誉滚滚而来,俄国圣彼得堡科学院选他为会员,发现Pallas的天文学家Olbers请他当哥廷根天文台主任,他没有立刻答应,到了1807年才前往哥廷根就任。

1809年他写了《天体运动理论》二册,第一册包含了微分方程、圆椎截痕和椭圆轨道,第二册他展示了如何估计行星的轨道。高斯在天文学上的贡献大多在1817年以前,但他仍一直做着观察的工作到他七十岁为止。虽然做着天文台的工作,他仍抽空做其他研究。为了用积分解天体运动的微分力程,他考虑无穷级数,并研究级数的收敛问题,在1812年,他研究了超几何级数(Hypergeometric Series),并且把研究结果写成专题论文,呈给哥廷根皇家科学院。

1820到1830年间,高斯为了测绘汗诺华(Hanover)公国(高斯住的地方)的地图,开始做测地的工作,他写了关于测地学的书,由于测地上的需要,他发明了日观测仪(Heliotrope)。为了要对地球表面作研究,他开始对一些曲面的几何性质作研究。

1827年他发表了《曲面的一般研究》 (Disquisitiones generales circa superficies curva),涵盖一部分现在大学念的「微分几何」。

在1830到1840年间,高斯和一个比他小廿七岁的年轻物理学家-韦伯(Withelm Weber)一起从事磁的研究,他们的合作是很理想的:韦伯作实验,高斯研究理论,韦伯引起高斯对物理问题的兴趣,而高斯用数学工具处理物理问题,影响韦伯的思考工作方法。

1833年高斯从他的天文台拉了一条长八千尺的电线,跨过许多人家的屋顶,一直到韦伯的实验室,以伏特电池为电源,构造了世界第一个电报机。

1835年高斯在天文台里设立磁观测站,并且组织「磁协会」发表研究结果,引起世界广大地区对地磁作研究和测量。

高斯已经得到了地磁的准确理,他为了要获得实验数据的证明,他的书《地磁的一般理论》拖到1839年才发表。

1840年他和韦伯画出了世界第一张地球磁场图,而且定出了地球磁南极和磁北极的位置。 1841年美国科学家证实了高斯的理论,找到了磁南极和磁北极的确实位置。

高斯对自己的工作态度是精益求精,非常严格地要求自己的研究成果。他自己曾说:「宁可发表少,但发表的东西是成熟的成果。」许多当代的数学家要求他,不要太认真,把结果写出来发表,这对数学的发展是很有帮助的。 其中一个有名的例子是关于非欧几何的发展。非欧几何的的开山祖师有三人,高斯、 Lobatchevsky(罗巴切乌斯基,1793~1856), Bolyai(波埃伊,1802~1860)。其中Bolyai的父亲是高斯大学的同学,他曾想试着证明平行公理,虽然父亲反对他继续从事这种看起来毫无希望的研究,小Bolyai还是沉溺于平行公理。最后发展出了非欧几何,并且在1832~1833年发表了研究结果,老Bolyai把儿子的成果寄给老同学高斯,想不到高斯却回信道:

to praise it would mean to praise myself.我无法夸赞他,因为夸赞他就等于夸奖我自己。

早在几十年前,高斯就已经得到了相同的结果,只是怕不能为世人所接受而没有公布而已。

美国的着名数学家贝尔(E.T.Bell),在他着的《数学工作者》(Men of Mathematics) 一书里曾经这样批评高斯:

在高斯死后,人们才知道他早就预见一些十九世的数学,而且在1800年之前已经期待它们的出现。如果他能把他所知道的一些东西泄漏,很可能现在数学早比目前还要先进半个世纪或更多的时间。阿贝尔(Abel)和雅可比(Jacobi)可以从高斯所停留的地方开始工作,而不是把他们最好的努力花在发现高斯早在他们出生时就知道的东西。而那些非欧几何学的创造者,可以把他们的天才用到其他力面去。

在1855年二月23日清晨,高斯在他的睡梦中安详的去世了。
高斯(Gauss 1777~1855)生于Brunswick,位于现在德国中北部。他的祖父是农民,父亲是泥水匠,母亲是一个石匠的女儿,有一个很聪明的弟弟,高斯这位舅舅,对小高斯很照顾,偶而会给他一些指导,而父亲可以说是一名「大老粗」,认为只有力气能挣钱,学问这种劳什子对穷人是没有用的。

高斯很早就展现过人才华,三岁时就能指出父亲帐册上的错误。七岁时进了小学,在破旧的教室里上课,老师对学生并不好,常认为自己在穷乡僻壤教书是怀才不遇。高斯十岁时,老师考了那道著名的「从一加到一百」,终于发现了高斯的才华,他知道自己的能力不足以教高斯,就从汉堡买了一本较深的数学书给高斯读。同时,高斯和大他差不多十岁的助教Bartels变得很熟,而Bartels的能力也比老师高得多,后来成为大学教授,他教了高斯更多更深的数学。

老师和助教去拜访高斯的父亲,要他让高斯接受更高的教育,但高斯的父亲认为儿子应该像他一样,作个泥水匠,而且也没有钱让高斯继续读书,最后的结论是--去找有钱有势的人当高斯的赞助人,虽然他们不知道要到哪里找。经过这次的访问,高斯免除了每天晚上织布的工作,每天和Bartels讨论数学,但不久之后,Bartels也没有什么东西可以教高斯了。

1788年高斯不顾父亲的反对进了高等学校。数学老师看了高斯的作业后就要他不必再上数学课,而他的拉丁文不久也凌驾全班之上。

1791年高斯终于找到了资助人--布伦斯维克公爵费迪南(Braunschweig),答应尽一切可能帮助他,高斯的父亲再也没有反对的理由。隔年,高斯进入Braunschweig学院。这年,高斯十五岁。在那里,高斯开始对高等数学作研究。并且独立发现了二项式定理的一般形式、数论上的「二次互逆定理」(Law of Quadratic Reciprocity)、质数分布定理(prime numer theorem)、及算术几何平均(arithmetic-geometric mean)。

1795年高斯进入哥廷根(G?ttingen)大学,因为他在语言和数学上都极有天分,为了将来是要专攻古典语文或数学苦恼了一阵子。到了1796年,十七岁的高斯得到了一个数学史上极重要的结果。最为人所知,也使得他走上数学之路的,就是正十七边形尺规作图之理论与方法。

希腊时代的数学家已经知道如何用尺规作出正 2m×3n×5p 边形,其中 m 是正整数,而 n 和 p 只能是0或1。但是对于正七、九、十一边形的尺规作图法,两千年来都没有人知道。而高斯证明了:

一个正 n 边形可以尺规作图若且唯若 n 是以下两种形式之一:

1、n = 2k,k = 2, 3,…

2、n = 2k × (几个不同「费马质数」的乘积),k = 0,1,2,…

费马质数是形如 Fk = 22k 的质数。像 F0 = 3,F1 = 5,F2 = 17,F3 = 257, F4 = 65537,都是质数。高斯用代数的方法解决二千多年来的几何难题,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但后来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家一定分辨不出来。

1799年高斯提出了他的博士论文,这论文证明了代数一个重要的定理:

任一多项式都有(复数)根。这结果称为「代数学基本定理」(Fundamental Theorem of Algebra)。

事实上在高斯之前有许多数学家认为已给出了这个结果的证明,可是没有一个证明是严密的。高斯把前人证明的缺失一一指出来,然后提出自己的见解,他一生中一共给出了四个不同的证明。

在1801年,高斯二十四岁时出版了《算学研究》(Disquesitiones Arithmeticae),这本书以拉丁文写成,原来有八章,由于钱不够,只好印七章。

这本书除了第七章介绍代数基本定理外,其余都是数论,可以说是数论第一本有系统的着作,高斯第一次介绍「同余」(Congruent)的概念。「二次互逆定理」也在其中。

二十四岁开始,高斯放弃在纯数学的研究,作了几年天文学的研究。

当时的天文界正在为火星和木星间庞大的间隙烦恼不已,认为火星和木星间应该还有行星未被发现。在1801年,意大利的天文学家Piazzi,发现在火星和木星间有一颗新星。它被命名为「谷神星」(Cere)。现在我们知道它是火星和木星的小行星带中的一个,但当时天文学界争论不休,有人说这是行星,有人说这是彗星。必须继续观察才能判决,但是Piazzi只能观察到它9度的轨道,再来,它便隐身到太阳后面去了。因此无法知道它的轨道,也无法判定它是行星或彗星。

高斯这时对这个问是产生兴趣,他决定解决这个捉摸不到的星体轨迹的问题。高斯自己独创了只要三次观察,就可以来计算星球轨道的方法。他可以极准确地预测行星的位置。果然,谷神星准确无误的在高斯预测的地方出现。这个方法--虽然他当时没有公布--就是「最小平方法」 (Method of Least Square)。

1802年,他又准确预测了小行星二号--智神星(Pallas)的位置,这时他的声名远播,荣誉滚滚而来,俄国圣彼得堡科学院选他为会员,发现Pallas的天文学家Olbers请他当哥廷根天文台主任,他没有立刻答应,到了1807年才前往哥廷根就任。

1809年他写了《天体运动理论》二册,第一册包含了微分方程、圆椎截痕和椭圆轨道,第二册他展示了如何估计行星的轨道。高斯在天文学上的贡献大多在1817年以前,但他仍一直做着观察的工作到他七十岁为止。虽然做着天文台的工作,他仍抽空做其他研究。为了用积分解天体运动的微分力程,他考虑无穷级数,并研究级数的收敛问题,在1812年,他研究了超几何级数(Hypergeometric Series),并且把研究结果写成专题论文,呈给哥廷根皇家科学院。

1820到1830年间,高斯为了测绘汗诺华(Hanover)公国(高斯住的地方)的地图,开始做测地的工作,他写了关于测地学的书,由于测地上的需要,他发明了日观测仪(Heliotrope)。为了要对地球表面作研究,他开始对一些曲面的几何性质作研究。

1827年他发表了《曲面的一般研究》 (Disquisitiones generales circa superficies curva),涵盖一部分现在大学念的「微分几何」。

在1830到1840年间,高斯和一个比他小廿七岁的年轻物理学家-韦伯(Withelm Weber)一起从事磁的研究,他们的合作是很理想的:韦伯作实验,高斯研究理论,韦伯引起高斯对物理问题的兴趣,而高斯用数学工具处理物理问题,影响韦伯的思考工作方法。

1833年高斯从他的天文台拉了一条长八千尺的电线,跨过许多人家的屋顶,一直到韦伯的实验室,以伏特电池为电源,构造了世界第一个电报机。

1835年高斯在天文台里设立磁观测站,并且组织「磁协会」发表研究结果,引起世界广大地区对地磁作研究和测量。

高斯已经得到了地磁的准确理,他为了要获得实验数据的证明,他的书《地磁的一般理论》拖到1839年才发表。

1840年他和韦伯画出了世界第一张地球磁场图,而且定出了地球磁南极和磁北极的位置。 1841年美国科学家证实了高斯的理论,找到了磁南极和磁北极的确实位置。

高斯对自己的工作态度是精益求精,非常严格地要求自己的研究成果。他自己曾说:「宁可发表少,但发表的东西是成熟的成果。」许多当代的数学家要求他,不要太认真,把结果写出来发表,这对数学的发展是很有帮助的。 其中一个有名的例子是关于非欧几何的发展。非欧几何的的开山祖师有三人,高斯、 Lobatchevsky(罗巴切乌斯基,1793~1856), Bolyai(波埃伊,1802~1860)。其中Bolyai的父亲是高斯大学的同学,他曾想试着证明平行公理,虽然父亲反对他继续从事这种看起来毫无希望的研究,小Bolyai还是沉溺于平行公理。最后发展出了非欧几何,并且在1832~1833年发表了研究结果,老Bolyai把儿子的成果寄给老同学高斯,想不到高斯却回信道:

to praise it would mean to praise myself.我无法夸赞他,因为夸赞他就等于夸奖我自己。

早在几十年前,高斯就已经得到了相同的结果,只是怕不能为世人所接受而没有公布而已。

美国的着名数学家贝尔(E.T.Bell),在他着的《数学工作者》(Men of Mathematics) 一书里曾经这样批评高斯:

在高斯死后,人们才知道他早就预见一些十九世的数学,而且在1800年之前已经期待它们的出现。如果他能把他所知道的一些东西泄漏,很可能现在数学早比目前还要先进半个世纪或更多的时间。阿贝尔(Abel)和雅可比(Jacobi)可以从高斯所停留的地方开始工作,而不是把他们最好的努力花在发现高斯早在他们出生时就知道的东西。而那些非欧几何学的创造者,可以把他们的天才用到其他力面去。

在1855年二月23日清晨,高斯在他的睡梦中安详的去世了......

1客车长190米,货车长240米,两车分别以每秒20米和每秒23M的速度前进.在双轨铁路上,相遇时从车头相遇到车尾相离需几秒?
答案:10秒.
2 计算1234+2341+3412+4123=?
答案:11110
3 一个等差数列的首项是5.6 ,第六项是20.6,求它的第4项
答案:14.6
4 求和0.1+0.3+0.5+0.7+.....+0.87+0.89=?
答案:22.5
5 求解下列同余方程:
(1)5X≡3(mod 13) (2)30x≡33(mod 39) (3)35x≡140(mod 47) (4)3x+4x≡45(mod 4)
答案:(1)x≡11(mod 13) (2)x≡5(mod 39) (3)x≡4(mod 47) (4)x≡3(mod 4)
6 请问数2206525321能否被7 11 13 整除?
答案:能
7现有1分.2分.5分硬币共100枚,总共价值2元.已知2分硬币总价值比一分硬币总价值多13分,三类硬币各几枚?
答案:一分币51`枚.二分币32枚.5分币17枚.
8 找规律填数:
0 , 3,8,15,24,35,___,63 答案: 48
9 100条直线最多能把平面分为几个部分?
答案:5051
10 A B两人向大洋前进,每人备有12天食物,他们最多探险___天
答案:8天
11 100以内所有能被2或3或5或7整除的自然数个数
答案:78个
12 1/2 + 1/2+3 + 1/2+3+4 + ......+ 1/2+3+4+....+10=?
答案:343/330
13 从1,2,3,......2003,2004这些数中最多可取几个数,让任意两数差不等于9?
答案:1005
14 求360的全部约数个数. 答案: 24
15 停车场上,有24辆车,汽车四轮,摩托车3轮,共86个轮.三轮摩托车____辆. 答案:10辆.
16 约数共有8个的最小自然数为____. 答案:24
17求所有除4余一的两位数和 答案;1210
可以出一些奥数题,名字就叫>
尽量不要写笑话,多写知识,问题,名人.

谁能提供几个智力题

将 1~9这九个数字分别填入下列算式中的□中,使等式成立:(每个数字只能用一次) □□□×□□=□□×□□=4002

【答案】

   将4002分解为2×3×23×29,由此可知,将4002分解成两个两位数的乘积有2种,即4002=58×69=46×87;而将4002分解为一个两位数与一个三位数的乘积有2种,即4002=23×174=29×138;所以根据每个数字只能用一次,所以填法只有一种,即:23×174=58×69=4002

某天上海世博会中国馆入口处已有945名游客等候检票进馆.此时,每分钟还有若干人前来入口处准备进馆.这样,如果打开4个检票口,15分钟游客可以全部进馆;如果打开8个检票口,7分钟游客可以全部进馆.现在要求在5分钟内所有游客全部进馆,需要打开___个检票口.

【答案】

  设1个验票口1分钟内放行的游客为1单位,那么1分钟新来的游客量为:
  (4×15-8×7)÷(15-7)=0.5;
  验票口开放时已有等候的游客量为4×15-0.5×15=52.5;
  5分钟内验票口需要放行的游客量为:52.5+0.5×5=55人;
  因此,需要打开的验票口的数量为55÷5=11个

 有三块草地,面积分别是5,15,25亩。草地上的草一样厚,而且长得一样快。第一块草地可供l0头牛吃30天,第=块草地可供28头牛吃45天,则第三块草地可供 头牛吃60天。

【答案】

  设每头牛每天的吃草量为1份,那么:
  第一块草地:5亩原来的草量+5亩30天长的草量=10×30=300份;
  即:每亩面积原有的草量+每亩面积30天长的草量=300÷5=60份
  第二块草地:15亩原来的草量+15亩45天长的草量=28×45=1260份;
  即:每亩面积原有的草量+每亩面积45天长的草量=1260÷15=84份
  所以每亩面积每天长的草量=(84-60)÷(45-30)=1.6份
  每亩原来的草量=60-30×1.6=12份
  第三块草地面积是25亩,60天长的草量为1.6×60×25=2400份;
  所以第三块草地可共(2400+12×25)÷60=45头牛吃60天。

  育才小学五年级学生分成三批去参观博物馆,第一批与第二批的人数比是5:4,第二批与第三批的人数比是3:2.已知第一批的人数比第二、三批的总和少55人.请问:育才小学五年级一共有多少人?

【答案】

  由题意,第一批:第二批=5:4=15:12
  第二批:第三批=3:2=12:8
  所以,第一批:第二批:第三批=15:12:8
  那么假设第一、二、三批的人数为15份、12份、8份,则:
  第一批比第二、三批的总和少12+8-15=5份
  得到:每一份地 人数为:55÷5=11人
  所以该小学一共有:11×(15+12+8)=385人

甲、乙、丙、丁包揽了班里期中考试的前四名.甲、乙的得分之和是108分,乙、丙的得分之和是149分,丙、丁的得分之和是121分,并且知道其中第一名的得分是第三名的2倍,那么第二名的得分是多少?

  【答案】

  利用整除性解决问题
  相比得到:丙—甲=41,乙—丁=28
  所以第一名是乙或者丙
  (1)若乙是第一,则因为149不能被3整除,所以丙不为第三,只能是第二,丁第三
  因为乙—丁=28,所以乙=56,但丙=149-56=93>乙,矛盾
  (2)若丙第一,则因为149不能被3整除,乙只能是第二,又因为121不能被3整除,所以丁只能是第四
  所以甲第三,丙—甲=41,即丙=82,甲=41
  最后得:第二名乙=108—41=67

 某小学的六年级有一百多名学生,若按三人一行排队,则多出一人;若按五人一行排队,则多出二人;若按七人一行排队,则多出一人。该年级的人数是___________。

  【答案】

  符合第一、第三条条件的人数为的最少人数为3×7+1=22人;而结果检验,22也符合第二个条件,除以5余2;所以可以得出符合这三个条件的最小值为22;但是题目给出已知条件是一共有学生一百多名;所以根据同余的性质可以得出:在22人的基础上还需要加上3、5、7的公倍数;而3、5、7的最小公倍数是3×5×7=105
  所以学生总人数为22+3×5×7=127(人)

有5个亮着的灯泡,每个灯泡都由一个开关控制,每次操作可以拉动其中的2个开关以改变相应灯泡的亮暗状态,能否经过若干次操作使得5个灯泡都变暗?

  【答案】

  掌握利用奇偶性来进行论证
  每个灯泡变暗需要拉动奇数次开关;则5个灯泡全部变暗一共也需要拉动奇数次开关;而每次操作是拉动2个开关;若干次操作后一共拉动的次数肯定是2的倍数,也就是偶数次;但是5个灯泡全部变暗一定需要总共拉动计数次,所以矛盾了;所以无论经过多少次操作都不可能使5个灯泡一起变暗。

以上就是小编对于问题和相关问题的解答了,希望对你有用

上一篇:亚洲伊人久久大香线蕉下载农村旧房室内设计装修图片【农村瓦房改造装修室内设计】 下一篇:国产91小鲜肉大战肥臀室内设计效果图 沙发组合

发表评论